料 成 利用射頻磁控濺鍍製備氧化鋅摻氮之薄膜 顥 探討光電特性 班級/學生 蔡杞隆、林于晴 燃料電池材料實驗室 FCM Lab. 指導教授 程志賢 教授 本研究中,利用鋅(Zn)靶材以RF射頻磁控濺鍍法製備ZnO薄膜 一氧化二氮(N₂O)為氮氣來源,在玻璃基板上沉積P型氧化鋅透明導電薄 簡 ZnO Film FCM. LAB 膜,並探討不同 N_2 O流量(4sccm~6.5sccm)對光特性的影響及p-type氧 Glass Substrate 化鋅透明導電薄膜形成之機制,也藉由霍爾量測系統測量薄膜之電阻率 •ZnO結構示意圖 •本實驗室製備之試片 載子濃度及載子遷移率等特性。 膜厚分析 Target Zn α-step

Substrate 150°C 成份分析 Raman temperature Base 鍍 <5 x10-6Torr 驗 表面分析 FE-SEM pressure Zn O Working 步 10mTorr 電性質分析 Hall pressure 薄 RF power 50W 縣 **UV-VIS** 光性質分析 Ar:95 sccm Working gas N2O:4~6.5 sccm 相結構分析 **XRD** • ZnO摻雜N2O薄膜之相關參數 電性質分析 結構分析 n-type ZnO(103) N_O:6.5 N₂O:5.5 ntensity(a.u.) 13.5 Grain 13.0 N₂O:4.7 N₂O:4.6 N,O:4.4 5.2 5.4 5.6 5.8 6.0 6.2 6.4 N,O(sccm) Fig5. 改變N₂O流量,固定Ar流量之成分分析及晶粒尺寸 Fig1.改變N2O流量,固定Ar流量之電性 Fig2.熱電偶n-type示意圖 130 研 Resistivity(D-cm) 120 12 Rate(nn 0 究 成 果 5.5 N₂O(so Thickness(nm) Fig4.改變改變N2O流量 Fig6.N₂O流量為4.8 · 固定Ar流量之微結構分析 Fig3.改變膜厚,固定Ar及N2O流量之電阻率 , 固定Ar流量之鍍率 成分分析 光性質分析 *:I_(N) (274.1) I₍₇₀₀₎ (433.5) p-type n-type Intensity (a. u.) N,O:6.5 Band Gap(eV) 3.25 N_O:5.5 N₂O:4.9 N₂O:4.8 N₂O:4.7 N_O:4.6 N₂O:4.5 N₂O:4.4 N₂O(sccm)

 $oxedsymbol{1}$. $oxedsymbol{1}$. $oxedsymbol{1}$ $oxedsymbol{1}$ $oxedsymbol{1}$ $oxedsymbol{1}$. $oxedsymbol{1}$ $oxedsymbol{1}$. $oxedsymbol{1}$ $oxedsymbol{1}$. $oxedsymbol{1}$ $oxedsymbol{1}$. $oxedsymbol{1}$ $oxedsymbol{1}$ oxedsymbo

Fig8 改變N₂O流量,固定Ar流量之穿透率及能隙圖

- 2.當 N_2 O流量增加時,發現到沉積速率逐漸降低,因為 N_2 O流量的提升,電漿中含有其他可能的 N_2 O解離物(如: N_2 、NO及N等),對靶材粒子碰撞,使行進方向或帶來能量轉移,這些碰撞將造成薄膜沉積進率下降。
- $3. \pm N_2 O$ 含量為4.8時,拉曼訊號強度比最高,因為此時的氧空缺最多,所以有大量的氮摻雜進去。
- 4.此實驗的穿透率幾乎都超過80%,而在p-type的能隙值因電阻變小而變小。

Fig7. 改變 N_2O 流量,固定Ar流量之拉曼分析

結

論

5.本實驗發現在 N_2 O流量為4.8時,可獲得最佳的p型導電薄膜,電阻率為 101Ω -cm、電洞濃度及遷移率分別為1.2x 10^{16} cm- 3 、5.1cm 2 /Vs。

明志科技大學 材料工程系四技部104學年專題製作競賽