

明志科技大學材料工程系106學年度 Effects of heat treating on the toughness, hardness and microstructures of AISI 1060 and 4340 steels.

Student: 潘天皇 PHAN THIEN HOANG 阮該 NGUYEN NEN Class: 越鋼專班 Advisor: Professor 李志偉

Introductio	าท			Specimen	Specimen Chemical compositions of steels									
Steels can be heat tre	eated to pro	oduce a great variety	of microstructur	es and properti	es. Generally, heat treatment can make steel to		Element (wt.%)	С	Ni	Cr	Мо	Mn		
have phase transform	mation duri	ng heating and coolir	ng and changes		AISI 1060	0.55-0.65	0	0	0	0.6-0.9				
properties and micros microstructures of Al	structures of SI 1060 and	of steels can be affecte I AISI 4340 steels after	ed by the heat to five different h	reatment. In this eat treatment p		AISI 4540	0.56-0.45	1.05-2.0	0.7-0.9	0.2-0.5	0.0-0.8			
treatment process on	the mecha	inical properties of ste	els were discuss	sed.			V notched Charpy type Specimen							
Experimental procedure														
1.Heat treatment 2.Impact test 3. Microstructure analysis 4. Hardness measurement														
Heat treatmen	t		ССТ		T °C T °F T	°C T	2F	4400						
Heat treatment	AISI 1060		AISI 4340		700 Eutectoid temperature 700 Ferrite 700 =	Eutectoid temperature	200	Austenite		15				
	Temp.	Holding Time	Temp.	Holding time	600 Austenite - Pearlite - 600	A (A+F) +P -	—Full annealing		Austenite + ferri	te26				
	020 ~	830°C : 24 min		820° C ·24 min	500 Bainite "nose" 0 1000		مم سNormalizing	1000	Austenite + ferri	te + carbide 33	нкс			
Full annealing	650°C	cooling within 6.5	830°C ~ 650°C	650°C : 8 hr	400 - Critical 400 - 400 -	A+B	00 —Quenching beau	800 Austanita 50		38	ardness,			
Normalizing	830°C	nours.	870°C	24 min	300 - 600 = 600 = 300 - 600 = 6000 = 600 = 600 = 600 = 600 = 600 = 600 = 600 = 600 = 600 = 600	- M start) 50% 1 B - 6	— Tempering at [⊢] 205°C [−]			50	I			
Quanching	915 ⁰ C	24 min	945°C	24 min	200 — 400 200 =	M(50%) M + A	→ Tempering at 550°C	400 M ₅₀						
Quenching	815°C	24 mm	845°C	24 min	100 M + F + _ / P + B 200 100	- M		200 200 200 200 200 200 200 200 200 200	5 2 5 2	5 2 5				
Tempering	205°C	2 nr	205°C	2 nr	$M \longrightarrow M + B \longrightarrow M + F \rightarrow F + P - $			1 10	10 ² 10 ³	10 ⁴ 10 ⁵				
Tempering	550°C	2 nr	550°C	2 nr	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10 10^2 10^3 10^4 10^5 10^6$ Time (s)			, Fine, sec					
					CCT curve of AISI4340	TTT curve of AISI4340		TTT c	urve of Als	511060				
Impact test			Charpy V-	determines the Examine the mic	rostructure	Hardne	Hardness measurement							

amount of energy absorbed by a material during fracture. This absorbed energy is a measure of a given material's notch toughness.

Use optical microscope to observe microstructure of steel. The physical and mechanical properties of steel may be related to its observed microstructure.

🔹 🗲 Point 🖁

Result

Treatment	Full annealing		Normalizing		Quenching		Tempering at 205°C		Tempering at 550°C	
Sample	AISI 4340	AISI 1060	AISI 4340	AISI 1060	AISI 4340	AISI 1060	AISI 4340	AISI 1060	AISI 4340	AISI 1060
Average hardness (Hv)	219.8	210.6	608.6	254.6	707.2	744.4	549.6	430.8	315.6	297.4
Standard deviation (Hv)	18.8	18.5	41	26.4	23.1	31.9	15.5	12.4	14.8	8.4
Treatment	Full annealing		Normalizing		Quenching		Tempering at		Tempering at	

Treatment	Full annealing		Normalizing		Quenching		205°C		550°C	
Sample	AISI 4340	AISI 1060	AISI 4340	AISI 1060	AISI 4340	AISI 1060	AISI 4340	AISI 1060	AISI 4340	AISI 1060
Average Toughness (J)	110.0	50.7	34.0	54.3	3.5	1.7	53.3	2.2	109.3	94.3
Standard deviation (J)	9.0	3.1	0.0	1.5	0.9	0.3	11.1	0.8	7.5	30.6

Hardness measurement

Toughness measurement

Microstructure

The internal oxidation defect causes the steel to absorb more energy so that the toughness increases to a higher value.

Conclusions

- ✓ The lowest hardness can be found for steels after full annealing due to the formation of soft ferrite phase.
- ✓ For AISI 1060 steel, the hardness of normalizing is higher than that of full annealing because of the formation of fine pearlite.
- ✓ Martensite phase has needle shape grains which makes the steel becomes very hard and very brittle.
- The tempering can release the stress and forms tempered martensite. The hardness of the steel after tempered at 550°C is lower but the toughness is greatly enhanced.
- ✓ For AISI 4340 steel, the Bainite structure has a very high hardness and moderate toughness.
- The combination of moderate hardness (316 Hv) and high toughness (109 J) can be found for AISI 4340 steel after tempering at 550°C due to its good hardenability by adding Cr, Ni and Mo elements.